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Grao uma palxao (introducao)
Perspectiva historica

Importancia e histdria

A importancia do crescimento de gréo foi reconhecida pelos primeiros metalurgistas.
Isso sem duvida foi decorrente da conclusdo de que o tamanho de grdo afeta de forma
dramdtica as propriedades de um material, e que o crescimento pode ocorrer em
processos de fabricagdo bastante corriqueiros, tais como a fundigdo, a transformacéo
mecanica e os tratamentos térmicos.

Um dos primeiros trabalhos experimentais a esse respeito foi de Mathewson e Phillips
[HISTGG], em 1916, com ligas Lat&o-a Cu-Zn. O tamanho médio de grdo foi
correlacionado com as propriedades mecanicas e fisicas das amostras de acordo com
sua temperatura de recozimento.

Ja no inicio do século dois tipos de crescimento de gréo j& eram.investigados: o normal
e 0 anormal. Para metais como o Latdo-a mencionado anteriormente, o crescimento
ocorria de forma gradual e resultava num aumento do tamanho médio dos grdos.
Entretanto, para materiais com presenga de uma dispersdo de particulas de segunda
fase na matriz, o crescimento "gradual” era fortemente inibido até uma determinada
temperatura. Quando ultrapassada, grdos de grandes dimensdes se desenvolviam
abruptamente numa matriz de grédos pequenos. O primeiro tipo de crescimento ficou
conhecido com normal ou continuo, enquanto que o segundo foi denominado
crescimento anormal ou exagerado.

Um exemplo bastante interessante desse segundo tipo é a fabricagdo de filamentos de
Tungsténio para ldmpadas incandescentes, através da smterlzagao de po de Tungsténio
com adigdes de Torio. Outro exemplo conhecido hd muito tempo é o dos agos ao Silicio
(3%Si) com teores mais elevados de Manganés e Fdsforo, nas quais grdos muito
grandes se desenvolviam com facilidade [HISTGG]Isto é um autor?.

Na verdade, ndo se distinguia os termos "crescimento de grio" e "recristalizacdo" nos
primordios da pesquisa metalirgica. Altherthum apud Hu, foi o trabalho que
reconheceu, em seu trabalho, a existéncia de dois tipos de "recristaliza¢do": uma
promovida no trabalho a frio (ou seja, pela deformacdo) e outra pela "tensdo
superficial”. Esse ultimo tipo corresponde ao que chamamos hoje de crescimento de
grao.

As primeiras pesquisas acerca do fendmeno foram realizadas através da variagio da
temperatura de recozimento. Poucos experimentos de crescimento isotérmico foram
realizados. A conclusdo mais comum, na época, era a de que para uma dada
temperatura de tratamento térmico, o tamanho de grdo aumentava rapidamente no
comego do processo e entdo a taxa de crescimento decrescia gradativamente. A
conclusdo s6 poderia ser que haveria um "tamanho de grio final" para cada
temperatura de tratamento, ja que a velocidade de crescimento decrescia muito dep0|s
de um determinado tempo e ndo se havia determinado a lei de crescimento de gréo.
Essa baixa velocidade de crescimento, aliado ao desconhecimento teérico do fendmeno,




foram os responsaveis por essa conclusio equivocada.

Beck e alei empirica classica

Foi s6 com o impressionante trabalho de Beck et al. [BECK] que essa idéia foi
derrubada. Realizando inUmeros experimentos de crescimento de grdo isotérmicos, ele
mostrou que a taxa decrescente de crescimento e o suposto "tamanho final de grio"
eram apenas devidos ao efeito da espessura da amostra, e que a lei empirica que rege
o processo de crescimento de gréo é:

D=K£l( 3-1)

onde D € o didmetro médio de grdo, t é o tempo de tratamento, K e n sdo parametros
que dependem da temperatura. O valor de n, o expoente do tempo, é menor ou
(raramente) igual a 0,50, como veremos mais adiante. Na grande maioria dos casos n
se aproxima de 0,50 na medida que nos aproximamos da temperatura de fusdo da
amostra.

A equagdo impde que, para t=0, D=0, o que ndo ocorre na realidade. Uma forma
alternativa e freqiientemente utilizada de expressar a mesma relacdo é:

1
D’{—DU%=CI(3_2)

onde DO é o tamanho médio de grdo antes do crescimento, C é um parametro similar a
K. As duas equagdes sdo equivalente para o caso de um valor de DO desprezivel em
relagdo a D, o que ocorre em um grande nimero de aplicagdes.

A primeira conclusao, de que ha um "tamanho final" de grdo para cada temperatura
deve-se provavelmente ao fato de que, como o crescimento é regido por uma lei
logaritmica, o crescimento € extremamente lento para intervalos de tempo elevados.

Mecanismns de crescimento
Recristalizacao e Crescimento de gran

A recristalizagdo primaria € o um dos processos de redugdo de energia livre num
material deformado que esta sujeito a um tratamento térmico. Quando ela é
considerada concluida, apesar de uma significativa redugdo de tensdes internas e de
energia livre, o metal ainda se encontra num estado metaestavel: ha grande quantidade
de energia associada as interfaces entre os grdos. A diminuigdo dessa quantidade é a
forma mais imediata para que o metal possa alcangar um estado de menor energia.

O potencial termodindmico para o crescimento de grdo ¢, portanto, a diminuigdo da
energia livre associada aos seus contornos, ou seja, as superficies que os separam. Em
principio o processo continua até que todas as interfaces sejam eliminadas (o material
se transforma num monocristal), mas na pratica ele é sempre interrompido antes que
isso ocorra. O resultado, portanto, é sempre um arranjo metaestavel.

Nas palavras de Dutra [DUTRA]:

"0 aumento no tamanho de grdo necessariamente envolve a diminuicdo na rea de
contornos de grdo por unidade de volume e, portanto, diminui a energia de
superficie do contorno de grdo por unidade de volume. Visto que este Ultimo
fornece o potencial termodindmico para o crescimento de grdo, segue-se que, ao
aumentar o tamanho de grao, por crescimento, automaticamente reduz-se o
potencial termodinamico para posterior crescimento. A velocidade de crescimento
de grdo, portanto, diminui e torna-se efetivamente zero quando a drea de
contornos de grdao ndo é extensa suficiente para fornecer um potencial
termodinémico adequado para sustentar o crescimento de grdo naquela
temperatura particular de recozimento. Tal limitacdo de crescimento é derivada da



propria natureza da cinética de crescimento de grdo do material.”

O processo ocorre pela movimentagdo dos contornos de grdo. Cabe aqui, entretanto,
um esclarecimento. Os "contornos de grdo", tdo famosos na metalurgia, ndo tém
existéncia fisica. Ndo hd, efetivamente, uma entidade "real" separando os grdos. O
contorno de grdo € apenas uma abstragdo que se refere a regido de relativa desordem
estrutural na regido que separa dois cristais de orientagdo diferente. Nas palavras do
prof. Ivan Falleiros [FALLEIROS]:

"Contorno de grdo ndo é nada mais do que um conjunto de dtomos fora de lugar®.

Essa observagdo é especialmente importante porque um dos pontos fundamentais do
modelo do presente trabalho ¢ a fidelidade a esse conceito, ou seja, ndo ha
representacao real do "contorno de grao" no modelo computacional.

Vale comentar que ha uma diferenga importante entre a recristalizacdo primaria (ou
seja, no momento em que ha formagdo e expansdo de novos grios) e o crescimento de
grao propriamente dito: no primeiro processo, os contornos migram para longe do seus
centros de curvatura, enquanto que no segundo eles migram em diregdo aos seus
centros de curvatura. Isso ocorre porque os atomos do lado céncavo (ou seja, com
menos ligagbes) tem tendéncia de migragdo para o lado convexo (com mais ligagdes).
Essa diferenga sera importante quando considerarmos o equacionamento do fendmeno.

Ha também uma diferenga quantitativa em relagdo a energia liberada, e segundo
Coterill [COTERILL]:

“Utilizando valores tipicos para a energia de contorno de grio por unidade de drea
€ para a mudanga da area de contorno por unidade de volume, Beck mostrou que a
energia liberada para um metal com didmetro de grdo médio de 10-2 mm, quando
ha crescimento de grdo até 10-1 mm, é da ordem de 0,2 cal/mol. Isso é mais de
cem vezes menor do que o valor liberado [...] durante a recristalizac3o priméaria.”

Movimentacan de contornos de gran

A movimentagdo dos contornos de grdo durante o crescimento de grio obedece a
alguns principios bastante elementares relacionados com a sua geometria.

O equilibrio de tensdes ¢ alcangado quando os &ngulos entre as fronteiras dos grios
obedecem a seguinte equacgio:

ia _ Va3 _ Vs

senq sene, senay (3-3)
onde

% 550 0s angulos entre os diedros e

Frm 530 as energias especificas das interfaces.

No caso de uma liga monofasica e considerando uma estrutura bidimensional na qual as
energias de interface sdo iguais e isotropicas (independente do carater e da orientagio
das mesmas), o dngulo de equilibrio é 120°. No caso espacial, o problema é bem mais
complexo. Varias tentativas foram feitas de conseguir-se um sélido que preenchesse
perfeitamente o espago. Um desses proposto por Kelvin, é o tetracaidecaedro, onde os
angulos de equilibrio tém aproxima: amente 1099,

O formato mais estavel das faces também é fundamental. De um lado, um &tomo
deslocado de sua posigdo de equilibrio no reticulado, por faltar um certo nimero de
vizinhos mais préximos, tende a mudar o nimero de coordenacdo de modo a encontrar
uma configuragdo mais estavel. Por outro lado, ha no material uma tendéncia de
minimizagao de superficie por unidade de volume. O processo continua até que se
forme uma configuragdo estavel sem tendéncia para migracdo, o que corresponde a



tornar o raio de curvatura infinito (ou a interface reta).

O angulo entre os contornos e a sua curvatura s3o os dois principios geométricos que
governam o crescimento de grao, baseados nas premissas termodindmicas
anteriormente citadas. A conseqiiéncia importante é que os grdos com acentuada
curvatura (0os menores e com nimero de lados inferior a seis) tendem a ser consumidos
pelos maiores (e com mais de 6 lados). Podemos dizer, portanto, que os maiores
crescem as custas dos menores.

Figura 1 — Os grdos com mais lados (normalmente os maiores) e sua diregdo
de migragdo. Os menores, com menos de seis lados, diminuem; os hexagonais
ficam estaveis. [SHEWMON]

Burke [BURKE] demonstrou que o potencial termodindmico para o crescimento de grdo
é a reducdo da energia associada com o decréscimo na area do contorno de gr3o, e
propds que a taxa de migracdo dos contornos é inversamente proporcional ao raio
médio de curvatura dos mesmos.

Smith apud Dutra [DUTRA] também confirma essa tese, através da analise das
seguintes relagoes:

o 2
£ (3-a)
V=MAP(3_5)

onde D P: diferenga de energia livre por unidade de volume, vocé tem que explicar o
que ¢é delta p - efeito gibbs-thmpson, discutir o que é mobilidade e como ela vria , por
exemplo, no caso dos contornos de grdo espciais _ Kronberg Wilson.

g : energia livre de superficie do contorno,

r: raio de curvatura da regido esférica,

M: mobilidade do contorno de grao (definido como a variacdo da velocidade de
migragdo com o potencial termodindmico) e

V: velocidade de migragdo dos contornos.

Logo, combinando as duas equagdes, percebemos que V é proporcional a energia livre
de superficie e inversamente proporcional ao raio, fato esse cuja importancia
discutiremos mais adiante.

Lri de crescimenta de qran

A lei que rege o crescimento normal de grdo é comumente definida pela relagdo:

§=kt”( 3-6)



onde Ré o didmetro de grdo, t é o tempo e k uma constante que varia
exponencialmente com a temperatura. O valor maximo (raramente verificado
experimentalmente) de n é 0,5.

Essa equagdo € resultado de uma série de consideracbes tedricas e matematicas que
examinaremos agora.

Como vimos, é a tensdo superficial das interfaces que controla o crescimento de gréo,
que também pode ser expressa por:

AF=or|l-L
n 1)(3-7)

onde D F : potencial termodindmico para o crescimento de grao,

V: volume atdmico,
s : tensdo superficial,
rl e r2: raios de curvatura dos dois grdos vizinhos.

1

1 1 1
Se rl = -r2 (ou seja, ndo ha vazios no contorno), non n e, portanto, n
(relagdo semelhante a da inversa proporcionalidade entre velocidade e raio gue ja
citamos).

Além disso, velocidade de migracdo dos contornos de grdo, em condigdes isotérmicas, é
dada pela relacdo:

C?=K'0'K
r(3-8)

“Qo
K'=K'ex
0 P[ RT

onde s € a energia de superficie e

onde T é a temperatura absoluta, R a constante universal e QG é a energia de ativacido
do material a uma dada temperatura.

Algumas simplificagdes sdo propostas por Burke:
» A energia de superficie s é independente do tamanho de gréo;

* A eficacia das inclusBes para ancorar o crescimento é independente da
temperatura e do tamanho de grdo;

. reDd (onde D é o didmetro médio de grao);
dD
—aG
o d
Dessa forma, a equacdo fica reduzida a:
dD _ Kol”
a@ D (39)
que integrada dos dois lados, resulta em
D? —Do2 = Kalt

(3-10)
onde DO é o didmetro inicial de grdo. Normalmente, esse valor é muito pequeno se



comparado a D2, o que resulta que

1
D=KaVt =KoVt % 51,

%
De fato, dados experimentais comprovam que Dai , 0 que valida as consideragoes
realizadas na demonstragdo. Usualmente utiliza-se a equacdo mais genérica
anteriormente citada:

—_ * s .
D=k , onde n assume o valor tedrico de 0,5.

Essas consideragdes introdutdrias fazem parte do arcabougo basico da metalurgia fisica.
Entretanto, quando se faz necessario um estudo mais detalhado do crescimento de grdo
numa liga, precisamos recorrer a um ferramental mais sofisticado. Afinal, a lei temporal
acima expressa apenas um crescimento médio. Ela ndo permite prever, por exemplo, as
diferentes velocidades de crescimento das varias classes de tamanhos presentes na
microestrutura. De fato, se verifica que hd outras consideragdes importantes a respeito
do crescimento de grdo que sdo dificilmente identificdveis sem a simulagdo
computacional. Segundo Anderson et al. [SROLOVITZ1]:

"Apesar de geralmente observarmos que grdos grandes crescem e pequenos
diminuem, exemplos onde o contrario ocorre podem ser encontrados. Além disso,
num grande numero de casos, as trajetdrias de grios especificos no gréfico do
didmetro de gréo versus tempo se cruzam. Isso sugere que o conhecimento do
tamanho de gréo instantdneo absoluto ou normalizado ndo é suficiente para prever
a evolugdo, ou mesmo a diregdo da evolugdo, de grios especificos.”

"A evolugdo dos grdos num gréfico normalizado de tamanho de grdo versus tempo

mostra-se independente do tamanho de grédo para R<KR. 0 movimento desses
contornos de grdo ndo é dirigido e se observa que eles crescem e diminuem

aleatoriamente. Graos onde R << Ryjsivelmente diminuem e desaparecem. Esses
resultados indicam a validade da descrigdo de comportamento aleatério para gréos
grandes e da cinética controlada pela curvatura para grdos pequenos.”

Essas consideragdes evidenciam a utilidade da simulagdo para compreender e
quantificar diversos parametros auxiliares do crescimento grdo. Um exemplo disso é a
constatagdo de que o comportamento dos grdos depende de seu tamanho relativo: a
curvatura e um fator muito mais importante para analisar o desaparecimento dos grdos
menores do que para determinar a diregdo de crescimento dos maiores.

Tratamentn analiticns
lLeis de crescimentao

Os conceitos basicos relacionados ao crescimento de grdo foram discutidos na segdo
anterior. Entretanto, recentes desenvolvimentos na area da anélise matemaética do
crescimento de gréo tém trazido luz a discussdo do problema, especialmente para a
explicagdo das distribuicdes de tamanhos encontradas em experimentos reais.

N&o é novidade afirmar que o crescimento de grdo em materiais monofasicos é causado
pela tendéncia dos contornos de migrar em diregdo ao seu centro de curvatura. Sutoki
[ANAGG], em 1928, demonstrou esse processo por uma série de micrografias que,
superpostas, mostravam claramente a diregdo de migragéo.



Figura 2: Micrografias esquematicas superpostas mostram a direcio de
crescimento dos contornos, em diregcdo ao centro de curvatura [ANAGG]

Como comentado anteriormente, em 1948 Beck et al. confirmaram que o potencial

termodindmico do processo de crescimento estava associada ac contelido energético

das superficies, que era diretamente proporcional & energia de superficie s e

inversamente proporcional ao raio médio Rm. A taxa de variagdo dessa variavel no
o

R

tempo, segundo Beck, seria proporcional a “*» , Integrando a expressdo, obtemos a lei

parabdlica do crescimento de gr3o:
(3-12)

A estimativa do pardmetro k ndo é, entretanto, tarefa simples. E necessario relacionar a
curvatura dos varios contornos de gréos presentes na amostra com o tamanho médio
de grdo. Uma das primeiras tentativas foi feita por Smith [ANAGG], que prop0ds que a
curvatura de um contorno de gréo tipico poderia ser estimado como sendo quatro vezes
o raio medio dos gréos. Ele também observou que um arranjo regular de graos de
mesmo tamanho poderia resultar num arranjo de contornos com curvatura liquida zero.
A conclusdo, portanto, foi que a determinagdo do pardmetro k sé seria possivel com o
conhecimento prévio do histograma da distribuicdo de tamanhos de grdo.

Outra proposicdo interessante foi feita por Feltham, apds uma exaustiva andlise
experimental de distribuigbes de tamanho de grdo. Segundo ele, o tamanho maximo de
gréo corresponde a 2,5 vezes o tamanho médio, o que o levou & equagdo que prevé o
crescimento de gréos de tamanho R:

2
£=k1n[i]
dt R, (3-13)

onde Rcr € o raio critico: gréos com raio maior crescem, caso contrario diminuem.

Hillert, mais recentemente, analisou os principais métodos analiticos de tratamento de
crescimento de grdo. O primeiro deles ja foi discutido na se¢do anterior de forma
simplificada, mas o tratamento de Hillert introduz mais complexidade ao
equacionamento. Seu ponto de partida é que, fundamentalmente, a for¢a que
movimenta um contorno de grdo vem de sua curvatura e pode ser expressa como uma
diferenca de pressao entre dois grios.

11
AP =o| —+ —

\ /)l /)2 / (3_14)

N
Y

onde r 1 e r 2 sao os raios de curvatura. A taxa de migragdo, portanto, pode ser obtida
adicionado-se um fator M de mobilidade:

p
1
v=MAP=Mao L+—

? )
WA /2/’(3_15)
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O aumento do tamanho de um grdo de raio Ri pode ser obtido se determindssemos a
curvatura ao longo de todo o seu perimetro e calculdssemos a média. Teriamos,
portanto,

dR 1 1

_5_ = Mag[.—__ +

a Pt P fweae (3-16)

onde o fator g depende do formato mas habitualmente assume o valor unitdrio. Apesar
de grdos de mesmo tamanho poderem apresentar curvaturas locais diferentes, Hillert

sugeriu que haveria um valor médio de curvatura que expressaria bem a tendéncia de
crescimento dos graos de um determinado raio R. A expressdo, portanto, fica:

11 1 1)
gl —+ — =

AN /)l /)2 /ml’dl'd \ RG?’ R 2 ( 3-17 )

0 que resulta em

dR 1 1 aMa| R
el )
t (24 ‘Rﬂ' ( 3-18 )
onde o fator a € uma constante que vale aproximadamente 0,5 para sistemas
bidimensionais e 1,0 para tridimensionais. Rcr esta relacionado com o tamanho médio

Feleis

de grdo do material em quest3o. A somatdria de dt para todos os graos deve ser
zero num sistema tridimensional, ja que o volume deve se manter constante. Essa
condigdo pode ser expressa da seguinte forma:

R

cr

=2
-R .z
R ( 3-19
u=_

Através de uma transformacgdo de variavel, com R, , @ equagao fica:

2
AR Mot ~1)

dt (3-20)

d' 2eMou-11_ ,
dinR)  dR:/d:

(3-21)
finalmente, se utilizarmos como medida de tempo o valor

=1, D2
r—lnRﬂ( 3-22)

e se assumirmos que a estrutura de grdos evoluira até uma configuracdo quasi-
estaciondria, podemos determina-la ja que os pardmetros da

2
AR oMot -1)

equacio 4! (3-20)

dR:

deverdo se manter constantes. Nessa situagdo, o valor de dt gera também constante
e portanto chegamos a lei parabdlica para o crescimento de grdo:

2 _pa_
Ko~ R =kt 353

Essa lei pode ser obtida sob duas condigdes. A primeira é que a equacio




y = MAP = Mu| —t 1

R "2"'(3-15)

é realmente vdlida, ou seja, que a taxa de migracdo é proporcional a diferenga de
pressdo entre dois grdos e a um valor de mobilidade M. A segunda é que a curvatura
liqliida média para grdos de tamanho R é inversamente proporcional a R e que a
constante de proporcionalidade é fungdo do tamanho relativo. A implicagdo disso é que
a distribuicdo de tamanhos de gréo permanece inalterada, ou seja, temos uma
distribuicdo quasi-estaciondria, fato esse bastante detalhado em [ANAGG].

O expoente da lei de crescimento de qran

A obtencdo do expoente da lei de crescimento de grio para casos reais n3o é tarefa
simples. Na verdade, para considerar a efeito de impurezas ou particulas de segunda
fase seria necessario reavaliar as premissas fisicas iniciais e introduzir novas variaveis
na equagdo que calcula a pressdo interfacial entre os grdos. Outra forma seria pela
introdugdo de um expoente na equagdo:

y = MAP = Mc-| -+ 1]

v P27 (345
v=MIAPT (304

Hu (recentemente falecido) e Rath, apud Hillert, propuseram essa alteragdo e
mostraram que o expoente de crescimento de grdo seria igual a m+1. Outra dificuldade
para o uso da equacdo

1\.

1
v =MAP = Mr‘ o
2/ (315)
€ que o valor da mobilidade M é na verdade um valor médio que pode nao representar o
sistema real, ja que dois gréos podem ter infinitas diferencas de orientagdo entre si, o
que alterara a mobilidade da interface.

Uma outra tentativa para elucidar o problema foi feita por Fortes [FORTES]. Ele
considerou duas forgas que impulsionam as interfaces. A primeira é conseqiiéncia da
energia superficial de trés contornos que ndo se neutralizam, ja que a mobilidade dos
atomos nas vizinhangas dos pontos triplos é limitado. A segunda vem da energia
proveniente da curvatura das linhas junto aos pontos triplos. O argumento de Fortes foi
que o crescimento de grao por um fator | faria decrescer a forga nas superficies curvas
pelo inverso de lambda, mas as forgas nas linhas junto aos pontos triplos continuaria
aproximadamente igual porque os dngulos seriam mantidos. A conseqliéncia é que o
efeito da curvatura junto aos pontos triplos seria predominante em grdos grandes e
que, dessa forma, o expoente de crescimento cairia de 2 para 1. Apesar de
conceitualmente interessante, a proposigdo de Fortes jamais foi verificada
experimentalmente. Um fato interessante é que, muitos anos depois, ela seria
confirmada pelo modelo proposto por Srolovitz [SROLOVITZ1].

Lovat e a aleatariedade

Louat [LOUAT] introduziu um conceito totalmente diferente. Segundo ele, o crescimento
de grdo era resultado de movimentos randémicos de contornos de grio e negligenciou o
efeito da energia de superficie. Sua explicagdo era que, ocasionalmente, esse
movimento aleatério faria com que um grdo desaparecesse. O grdo evidentemente nio
seria "recriado”, e o resultado geral seria uma dimuini¢do do ndmero de grios e um
aumento no tamanho medio dos remanescentes. O equacionamento proposto por Louat
tem um formalismo semelhante ao dado por Fick para o equacionamento da difusdo:



2
o p3E
dt oR (3-25)

onde F(R,t) é a distribuigdo de tamanhos de grdo e D é uma constante analoga a de
difusdo. A curva de distribuigdo de tamanhos e a lei parabdlica obtida por Louat foram
bastante satisfatdrias. Varios autores, entretanto, questionam o embasamento fisico
para essas consideragdes. Se os movimento dos contornos fossem apenas devido ao
movimento Browniano, o crescimento seria extremamente lento.

O que alguns autores fizeram, e que veremos mais adiante no modelo computacional,
foi adicionar um fator de aleatoriedade ao equacionamento classico. Hunderi, Ryum
[HUNDERI] e Pande [PANDE] fizeram essa tentativa. Enquanto os primeiros
simplesmente adicionaram um termo a mais a equagio da continuidade, dentro do
modelo de crescimento por energia superficial, o Gltimo propds que

%‘3 - FRD+TE
‘ (-26)

onde T(t) € um termo de "ruido” que descreve rearranjos aleatorios que ocorrem na
estrutura de graos, sobretudo devido ao desaparecimento destes. A abordagem de
Pande foi criticada por varios autores, como Hunderi e Thorvaldsen apud Hillert.
Segundo eles a adigdo do efeito aleatdrio ndo melhorava o ajuste aos dados
experimentais, o que foi mais tarde reconhecido pelo préprio autor.

Outro a criticar a abordagem de Pande foi Mullins [MULLINS], numa anélise bastante
detalhada da equagdes de crescimento de grdo. Sua conclus3o foi que os efeitos
aleatorios seriam despreziveis ou simplesmente nulos. Nas suas proprias palavras:

"We conclude that Brownian fluctuations do not justify the diffusion term, except
possibly on the scale of a few nanometers”.

A analise de Mullins se baseou no célculo da relacdo w/d , onde d é o didmetro médio
de grdo e w € a raiz quadrada do deslocamento devido as flutuagbes Brownianas no
contorno de grdo durante um tempo t , suficiente para o contorno deslocar-se uma
disténcia d sob a influéncia da forga de curvatura. Na verdade, o que ele calculou foi a
razdo entre as influéncias da flutuacdo browniana e da curvatura. Para um valor de
d=10-8m, T=1000°C e g (energia do contorno) = 0,3 J/m2, Mullins chegou na razéo

Rz . ~ . ) e
w/d 0’02, 0 que mostra que o efeito da flutuagdes Brownianas so é sensivel para
graos de alguns nanémetros.

Vale lembrar que esses comentarios ndo referem-se & abordagem estocéstica do
método de simulag3o computacional, mas ao tratamento analitico e ao equacionamento
do crescimento de grdo. Embora a verificagdo da validade do modelo de simulagao
passe necessariamente pela comparagdo com o tratamento analitico, todos os autores
aqui citados concordam com a validade do modelo. Uma andlise e comparagio mais
detalhada sera feita no capitulo

Particulas de segunda fase

O crescimento de grdo, entretanto, quase nunca se da sem algum tipo de limitagao.
Como diz Dutra {[DUTRA],

"As quatro formas conhecidas de inibicdo do crescimento normal de grdos sdo
devidas a atomos de soluto, espessura da amostra, orientacdo preferencial
pronunciada e particulas de sequnda fase".

A particulas de segunda fase sdo especialmente interessantes ao modelamento
computacional porque introduzem um elemento novo: diferentes energias de interface.

Quando uma particula de segunda fase estd em contato com o contorno de grao, é



necessaria a criagdo de uma determinada area para que a migragdo do mesmo ndo seja
interrompida. Isso, evidentemente, envolve a ultrapassagem de um potencial
termodindmico, ou seja, consumo de energia.

Segundo Rios, apud Dutra, ndo ha substituicdo da interface matriz-particula quando o
contorno de grdo interage com uma particula de segunda fase. Assim, uma area de
interface adicional deve ser criada e "a energia requerida para que o contorno atravesse
a particula é utilizada por completo para criar essa nova superficie."

Supondo um arranjo aleatério de particulas de segunda fase esféricas, ele mostrou que
a area (energia) de restrigdo devida as particulas pode ser representada por:

dS, =4zR3S}dR

®(3-27)
onde
Sp : area a ser criada devido a presencga de particulas,
S}’

¥ : superficie especifica das particulas de segunda fase,
RR: raio do grao analisado.

Segundo Dutra,

"A partir de uma estrutura de grdos esféricos, Rios mostrou que a variacdo total na
superficie especifica por grdo médio consiste na soma da variacdo da superficie
especifica dos gréos numa estrutura que exibe crescimento normal de grdos com a
variagdo da superficie especifica devido a presenca das particulas de segunda fase.”

Zener [6] propds a seguinte relagdo:
4
R=2L

3/ (3-28)
onde R: raio limitante (curvatura),
r: raio da particula de segunda fase
f: fragdo volumétrica das particulas de segunda fase.

O raio R do grdo nem sempre é igual ao raio de curvatura do contorno (r ), fato esse
que levou Smith apud Dutra a propor uma pequena alteragdo. A relacdo de Zener-
Smith, portanto, é:

D=4r

3/ (3-29)
onde D é o didmetro médio (tamanho médio) de grio.

Textura

Estudos tedricos e experimentais mostraram que a lei parabdlica de crescimento de
grdo e raramente conseguida em materiais reais. A forgas devidas a precipitados ou
atomos estranhos dissolvidos no contorno de grdo sempre foram consideradas como as
principais causas desse desvio. Recentemente foi demonstrado experimentalmente, em
ligas CuZn, AIMn e AlMg [BRICKEN] e em simulag@es por computador [EICHEL] que
variagoes de textura podem ocasionar grandes alterages na cinética de crescimento de
grao.

Vogel e Klimanek [CADGG] realizaram um interessante trabalho de comparagdo de
resultados experimentais em ligas CuZn25 com o resultado da simulagdes de Liicke
[LUCKE]. A idéia era investigar a afirmagdo de que grandes variacdes de textura faziam
com que o coeficiente de crescimento n passasse do valor tedrico de 0,5. Através de
uma analise detalhada do tamanho de grdo (por microscopia 6tica) e da textura (por
EBSP), os resultados indicavam um rdpido crescimento no inicio do recozimento
(n=0,71). No estagio final, a partir de 10 minutos, a taxa de crescimento cai bastante,
chegando a n=0,12. Vogel aferiu que, no inicio do processo, o componente de textura
{236} <385> dominava a amostra, com uma fragdo volumétrica de 63%. Depois de 128



minutos, esse valor havia caido para 11%.

Tempo de recozimento Componente Componente
{236}<385> {296}<211>
Tamanho Fragdo (%) Tamanho Fragao (%)
{(m m) (m m)

1 min 11,6 £1 63 12,1 £1 16

32 min 39,7 £ 3,1 32 59,9 + 3,7 61

128 min 54,2 + 4,9 11 70,2 £ 4,2 73

Tabela 1 - Evolugao de textura e tamanho de grio no CuzZn25 a 600°C
[CADGG]

Comparando com os resultados da simulagdo, concluiu-se que a etapa inicial de
crescimento rapido estava ligado a fortes modificagbes de textura. Na segunda etapa,
mais lenta, nenhuma modificagdo importante de textura foi identificada.

Historia e conceito dos Métodos de Maonte Carlo
Projeto Manhattan

O nome do método de Monte Carlo vem da famosa cidade no principado de Mdnaco,
onde se encontram alguns dos mais famosos cassinos do mundo. Essa associagao foi
feita porque o método baseia-se no uso de nimeros aleatérios, assim como a roleta dos
cassinos de Monte Carlo.

O meétodo existe desde o século XIX, mas sua primeira aplicagdo real surgiu na Segunda
Guerra Mundial, quando a construgdo das armas nucleares exigiu complexas simulagdes
sobre a difusdo de neutrons. A partir dai varios pesquisadores passaram a estudar o
método de Monte Carlo para aplicages mais "pacificas", resolvendo diversos problemas
da matematica e da fisica.

Calculo de area, exemplo classico

Mas... 0 que é o método de Monte Carlo? Vamos iniciar com um exemplo bastante
simples: vamos imaginar que precisemos medir a drea da figura abaixo:
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A forma convencional de célculo seria através da divisdo da figura em varias porgoes
geometricamente regulares e o célculo de suas respectivas areas. Esse método é
bastante trabalhoso e, dependendo da figura, pode ser impraticével. Pelo Método de
Monte Carlo, fariamos o seguinte:

e Encerrariamos a figura num retdngulo de area conhecida.

» Espalhariamos 100 ou mais pontos aleatérios sobre a regido.



» Contariamos os pontos que cairam dentro e fora da figura e, através de uma
simples "regra de trés", teriamos a area com uma margem de erro controlavel.

O método de Monte Carlo parece um "ovo de Colombo": depois de entender o seu
conceito basico, nos perguntamos porque ndo haviamos pensado nisso antes...

Ao invés de partir de complicadas equagdes matematicas para calcular um determinado
fendmeno, ele faz uma infinidade de testes aleatérios e avalia quais est3o "dentro" e
"fora" das condigbes (ou da regra local) do problema.

O fato € que ele tem sido usado nos mais diversos campos do conhecimento, desde a
simulagdo do comportamento de particulas subatdémicas até a analise de risco nas
bolsas de valores. Do conceito bésico do método - a aleatoriedade - decorrem diversas
conclusBes tedricas: os métodos deterministicos (ou seja, que partem de equagdes pré-
determinadas) sdo sempre aproximagdes mais "artificiais" do fendmeno real. J4 os de
Monte Carlo reproduzem - e ai esta a sua maior beleza - a natureza aleatéria da
interacdo de atomos e moléculas, aproximando-se do fendmeno. Na natureza, as
particulas evidentemente ndo tém "vontade prépria". Seu comportamento, dentro de
situagdes limitadas, pode ser descrito por leis probabilisticas, assim como na simulagao
de Monte Carlo.

Simulacao de guerra

Mas... qual é a grande vantagem do método de Monte Carlo? E que ele permite resolver
alguns problemas matematicos muito complexos de forma muito simples e engenhosa.
A solugdo analitica (ou seja, através de equacgBes matemdticas) de alguns problemas
pode ser extremamente trabalhosa ou simplesmente impossivel. Pelo método de Monte
Carlo, varios problemas sem solugdo podem ser resolvidos.

Imaginemos outro exemplo: uma guerra. Temos dois exércitos, cada um com um
tamanho diferente, mas com soldados com as mesmas armas e 0 mesmo preparo. Seria
possivel prever o resultado da batalha? A solucdo convencional (analitica) para esse
problema seria tentar montar uma espécie de equacgéo:

s Velocidade de avango do exército = niumero de soldados x (qualidade das armas
+ preparo dos soldados)

Entretanto, esse tipo de solugdo é muito discutivel: como avaliar a varidvel "qualidade
das armas"? Sera que o nimero de soldados influi linearmente no avanco do exército?
Para determinar tudo isso, normalmente recorremos a vérias experiéncias praticas.
Avaliariamos a historia de vérias guerras, testariamos as hipéteses e verificariamos se
0s resultados estdo corretos,

Além de ser trabalhosa, essa solugdo estd sujeita a muitas incertezas: sera que
consideramos todas as varidveis? Serad que os efeitos observados tém as causas que
imaginamos?

Mas como seria possivel "simular” o resultados da guerra pelo método de Monte Carlo?



Uma solugdo seria dividir o campo de batalha em varios "micro-combates". O elemento
considerado esta em vermelho e a sua vizinhanca mais préxima em cinza.

Cada soldado, nesse exemplo, pode estar cercado por até oito outros combatentes. Para
cada micro-combate, avaliariamos o seguinte: se o soldado esta cercado por mais
inimigos do que amigos, ele "perde” o micro-combate e é capturado pelo exército
inimigo.

Da mesma forma, se num outro micro-combate ha mais elementos do exército azul do
que do vermelho, os azuis ganham uma posigdo. Como seria o esquema da simulagao
de Monte Carlo para essa "guerra" ficticia?

e Escolha aleatdria de um soldado no local de combate.
* Primeiro calculo: quantos vizinhos do mesmo exército tem o soldado (Vi)?
e Quantos vizinhos diferentes ele tem (Vd)?

e Se ha mais vizinhos diferentes do que iguais (Vd-Vi<=0), o soldado é capturado
e a posicdo passa para o outro exército.

Esse processo, repetido para todos os soldados, por milhares de vezes, s6 terd um
resultado satisfatério se a regra basica (regra local) que definimos para a simulagao
esteja correta (ou seja, sempre quem tem mais soldados no "micro-combate" ganha).

Ha um questionamento importante ao nosso "método": trés soldados ndo podem
ganhar de seis? Ndo ha inimeros casos, na histéria militar, de pequenos exércitos que
vencem os grandes? Sim, evidentemente é possivel que isso ocorra. Em termos mais
rigorosos, ha uma certa probabilidade de um grupo minoritario de soldados ganhar o
"micro-combate”. O Método de Monte Carlo permite que seja incluido esse elemento
novo da simulagdo. Bastaria que rescrevéssemos o quarto item:

e Se ha mais vizinhos diferentes do que iguais (Vd-Vi<=0), em 90% dos casos o
soldado € capturado e a posigdo passa para o outro exército. Em 10% dos €asos,
0 grupo minoritario vence o outro.

Poderiamos sofisticar ainda mais a simulagdo. Nosso exército pode ser dividido em dois
grupos, uma tropa de elite e os soldados normais. Um integrante da tropa de elite tem
o dobro de preparo de um soldado. Nosso quarto item ficaria, com essa modificacdo:

* Se ha mais vizinhos diferentes do que iguais (Vd-Vi<=0), em 90% dos casos o
soldado é capturado e a posigdo passa para o outro exército. Em 10% dos €asos,
0 grupo minoritario vence o outro. Para o célculo do nimero de vizinhos



diferentes ou iguais, caso algum deles esteja identificado como tropa de elite,
conta como dois soldados normais.

Uma altima sofisticagdo: suponhamos que um dos exércitos seja mais sensivel ao calor,
e que tenhamos uma variavel auxiliar que nos dé a temperatura ambiente ao longo do
dia, de acordo com o clima tipico do local. Poderiamos cruzar as duas informagodes e
teriamos um item dessa forma:

» Se ha mais vizinhos diferentes do que iguais (Vd-Vi<=0), em 90% dos casos o
soldado é capturado e a posicdo passa para o outro exército. Em 10% dos casos,
0 grupo minoritario vence o outro. Para o calculo do nimero de vizinhos
diferentes ou iguais, caso algum deles esteja identificado como tropa de elite,
conta como dois soldados normais. Caso a temperatura ambiente seja maior que
3009C, os soldados do exército azul passam a ter 20% a mais de chance de
perder um "micro-combate”.

As possibilidades de sofisticagdo séo infinitas, e os resultados ficam cada vez mais
precisos.

A simulagdo de crescimento de grdo pelo Método de Monte Carlo, tema desse trabalho,
é simples de entender & luz do exemplo anterior: a "guerra” aqui ndo é de soldados,
mas de atomos. Os grdos, nessa analogia, equivalem aos exércitos.

Essa e outras analogias ndo sdo simplesmente "coincidéncias" ou curiosidades. O
crescimento de grao baseia-se num principio natural de evolucdo de estruturas onde ha
minimizag3o de area interfacial por unidade de volume, que encontramos também em
organismos bioldgicos e divisGes ecoldgicas.

O metodo de Monte Carlo descreve com uma boa fidelidade impressionante o
crescimento de grdo, mas vai além: seu principio € probabilistico, e o comportamento
dos atomos também é.

Monte Carle e 02 qrans
Histaria: Srolovitz & o primeiro alqaritmn

Tradicionalmente o estudo do crescimento de grdo tem sido feito pela andlise e
comparagdo quantitativa de micrografias, muitas vezes com o auxilio de computadores
e softwares de analise de imagem. Mais recentemente, entretanto, com o
desenvolvimento do poder de processamento dos computadores, surgiu uma nova
possibilidade: estender o uso da computag&o para simular o crescimento de gréo.

Srolovitz et al. [SROLOVITZ1] propuseram a metodologia classica de modelamento e
simulagdo de crescimento de grdo por computador, utilizando o método de Monte Carlo.
Tal metodologia foi aprimorada por varios autores, como veremaos no decorrer do
trabalho, e atingiu um nivel de sofisticacdo bastante alto.

O uso do metodo de Monte Carlo se mostra particularmente interessante para a
simulagdo de um processo que envolve interagbes atdmicas, ja que se trata de um
fenémeno fisico habitualmente estudado com o auxilio da estatistica. Com uma
conceituagdo igualmente estatistica, o método apresenta uma compatibilidade
expressiva com o fendmeno,

Foi em 1983, com a publicagdo de "Grain Growth in Two Dimensions" [SROLOVITZ0],
na Scripta Metallurgica, que o método de Monte Carlo passou a integrar as ferramentas
para o estudo do crescimento de grdo. Esse primeiro estudo atingiu um valor para o

=3
expoente de crescimento de ? A Logo depois, em 1984, os mesmo autores
publicaram dois estudos muito mais aprofundados sobre o assunto ([SROLOVITZ1],
[SROLOVITZ2]). Com enorme riqueza de detalhes, aspectos teéricos e experimentais
foram discutidos. Dentre as contribui¢Bes do trabalho, vale citar:



e valor muito bom para o coeficiente de crescimento de grdo (em torno de 0,43);
» estudo sobre o nimero de orientagdes maxima para a simulacdo:

» estudo da distribuigdo de tamanhos de grado da simulagdo e comparacao com
dados experimentais;

» discussdo sobre os tipos de matrizes possiveis para a simulacio de Monte Carlo.

Radhacrishian, Saitn, Mehnert e Penelle

Depois desses papers histéricos, foi Radhakrishan e Zacharia que deram o outro grande
passo, com uma mudanga conceitual no algoritmo que aproximou o coeficiente n do
valor teodrico de 0,50.

Mehnert contribuiu para a pesquisa de sistemas tridimensionais e com textura, além de
um interessante trabalho sobre a conversdo da escala de tempo da simulagao.

0 Japdo € outro centro de desenvolvimento importante, principalmente na figura do
Prof. Y. Saito, da Kawasaki Steel Corporation. Sua contribuicdo importante foi o
estabelecimento de uma correlagdo entre os resultados do experimento e valores de
crescimento de grao obtidos em amostras reais.

A Universidade d'Orsay, na Franga, € outro centro importante. Apesar de denominarem
o método de "autdmato celular”, o conceito é o mesmo proposto pelo Prof. Zacharia e
utilizado no mundo todo. Os professores Baudin e Penelle sdo os principais
pesquisadores nesse tema, contribuindo para a pesquisa de crescimento de grao em
acos-silicio.

Sandia Natianal Labarataries

Na visita que realizamos ao Sandia National Laboratories, em Albuquerque (NM),
estivemos em contato com a nova fronteira da simulagdo de crescimento de grdo. Com
recursos computacionais expressivos (um dos maiores computadores paralelos do
mundo esta instalado 1a, com 9.000 processadores Pentium Pro em paralelo), os
pesquisadores do Sandia ocupam-se atualmente em modelar o crescimento de gréoea
movimentagao de poros no combustivel nuclear de grandes misseis balisticos (Elisabeth
Holm), além de calcular a fragdo ideal de particulas inibidoras de crescimento de grao
em uma liga (Mark Miamodo). Outra linha de pesquisa do laboratério é a previsdo da
microestrutura de juntas soldadas (Richard Fye) ([RFYE2], [MARK]).



A idéia basica do uso do método de Monte Carlo para simular o crescimento de grdo é
tdo simples quanto fascinante: ele se baseia quase inteiramente na termodinamica das
interagGes atbmicas.

O primeiro passo é representar a amostra como uma matriz bi ou tridimensional. Nela,
cada elemento de volume é representado por um valor numérico inteiro que indica a
sua hipotética orientagdo cristalogréfica. Porgées contiguas da matriz com um mesmo
valor constituem os grdos.

O primeiro ponto importante do modelo proposto por Srolovitz é a necessidade de
discretizagdo da amostra: precisamos, de alguma forma, dividi-la em uma série de
pequenos elementos que possam ser manipulados pelo algoritmo. Outros meétodos, que
partem de modelos bastante diversos, tratam a amostra como continua, sem a
necessidade de discretizagdo [3DVERT] Entretanto, como o préprio nome diz, o método
dos autdmatos celulares necessita a discretizagiio em "células": em outras palavras, a
divisdo do material em um nimero suficiente de elementos de volume para que o
modelo reproduza adequadamente o fenémeno real. Se dispuséssemos de um
computador com um poder de processamento altissimo, poderlamos alcangar o nivel
atdmico. Cada atomo da amostra seria mapeado na memoaria do computador e teriamos
uma discretizagdo "perfeita". Como isso ndo € possivel para um nimero razoavelmente
grande de atomos, a solugéo € criar pequenos elementos de volume.

Um primeira forma de discretizagdo é a divisdo quadrada ou clbica da matriz. Cada
elemento terd, portanto, um conjunto de coordenadas (x,y) ou (X,y,2).

DO O 00 DD DD oD oD b ol PRI LS
666633333333333333366772277227
16633323333333333336667277272727
1333333333333333336666667777
333333333331113333666666772727
333333331111111 6666668888
33333333311111144449666688888
3333333331111144444466588888
33333333233111144444445558888
3333333333372744444555555558
32227333337727274445555555555
22272773887272227274359509555555
222772788872272227753559955995
222222888877772222723559955333
2277228888277 72727227295959553333
2222778B888B?2272772555555333:
2227277288888727272777227555358888
227272272728882277772?277225888888
A2222222782272222277272888 8
AQP7722222222272222727888 88
QR7227737222222227227788 a8
A4q27887772222222711188 88
44488882727277771111888 B8
4444888833227711111188 88
4444888333371111111188 B8
8833333331111111188888888
4411333333311111111188888888
411133333331111111118888888
111133333311111111188888888
11131133331111111111188888111

Figura 1 - Matriz bidimensional quadrada



O "contorno de grdo", portanto, é uma superficie imaginaria que separa volumes com
orientagdes diferentes.

2 2 2 4 4 4 4 4 4 4 999 9 9 0
2 2 4 4 4 a4 4 4 4 9 9 9 9 9 9
2 g 4 4 4 4 4 4 49 9 9 9 9 9 9
S 4 4 4 4 4 4 4 4 9 99 9 9 9
5 8 4 4 4 4 4 4 4 99 99 9 9 &
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saeaaaaae\uss( 7T 71 17
8 8 8 8 838 & a,_/"—"] 1 Y™~7 71 7

Figura 2 — Matriz triangular com os contornos de grdo imaginarios

Figura 3 - A matriz numérica visualizada graficamente

Escolhida e preparada a matriz, devemos passar a simulagdo propriamente dita. Ela
pode ser descrita em quatro etapas:

 cdlculo da energia livre de cada "dtomo" (Gi), com sua orientagdo cristalografica
atual (Qi);

e atribuigdo aleatdria de uma nova orientagdo ao "dtomo";
e calculo da nova energia livre do "4tomo" (G;) com a nova orientagdo (Qy);

e comparagdo dos dois valores de energia livre (G¢-G;). A orientagdo (Q; ou Q;) que
minimiza a energia prevalece.



Essas quatro etapas sdo repetidas milhdes de vezes em posigdes aleatérias do reticulo
cristalino. Temos como resultado geral uma simulaggo microscépica do abaixamento da
energia livre do sistema, que €, na verdade, o que impulsiona o crescimento dos graos.

No exemplo abaixo, podemos notar claramente a correlacdo entre a descricao
geométrica do fendémeno e o algoritmo. Temos dois "recortes" de uma matriz quadrada,
um feito antes da tentativa de reorientacdo e outro, depois. No primeiro, notamos que o
contorno hipotético entre os dois grdos tem uma curvatura bastante acentuada. No
segundo "recorte”, entretanto, vemos que o contorno se torna reto, ou seja, ha
abaixamento da energia associada a curvatura dos contornos. A diferenga de energia
livre entre os dois estados indica que o segundo é mais favoravel, sendo entdo mantido.

Figura 4 — Exemplo do calculo de energia livre do elemento central da matriz
(Q: = 2). As vizinhancgas diferentes s3o representadas por uma flecha preta, e
as iguais, por uma branca. Nesse caso, o G; = 5 (hd cinco vizinhos de
orientagdo diferente).

Figura 5 - Com uma tentativa de reorientacio para Qs=1, a energia livre cai
para Gf=3. A diferenca (Gf ~ Gi) é negativa (-2) e portanto a reorientacdo é
energeticamente favordvel.

Figura 7 - Exemplo da estabilidade de um ponto triplo onde os angulos entre
os grdos sdo aproximadamente 120°. Uma reorientagdo para Q=3 resulta no



mesmo valor de energia livre (G=5). J4 uma reorientacio para Q=2 resulita
numa configuracdo com maior energia livre (G=6), portanto nio favordvel
energeticamente. Salvo flutuacées estatisticas, essa configuracio é estavel.

E interessante notar que o principio da simulagdo é apenas a termodindmica do arranjo

atémico: ndo se utiliza qualquer outra inferéncia tedrica ou experimental, ou seja, ndo

partimos de leis matematicas de crescimento ou valores experimentais. Esses valores e

leis serdo, na verdade, o resultado das simulagdes e poderdo ser comparados com

valores experimentais.

Condigdes da simulagao
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Figura 8 - Algoritmo bdsico [SAITO] - Clique aqui para executar uma
demonstracdo do programa de simulacdo

O Hamiltoniano que descreve a interagdo entre os vizinhos mais préximos, a qual

representa a energia do contorno de grdo é:

H=-J35, -1
£ 2

(4-1)

S, . ~ A . . e J
onde “!e uma das Q orientagbes possiveis no elemento i da matrize “®é o delta de
Kronecker, que vale 1 quando as suas parcelas sdo iguais e 0 quando so diferentes.

O resultado € que vizinhos diferentes contribuem em J para a energia do sistema e 0



caso sejam iguais.

A transicdo de probabilidade W é dada por:
7 = {exp(—AG/ ET)=>NMF >0

<
1= AG<0 (4-2)
onde 8G¢ a alteragdo de energia ocasionada pela mudanga de orientacdo, kb é a
constante de Boltzman e T a temperatura.

A velocidade do segmento do contorno que se move &, entdo:

v, =c[1—exp(—AG,.fk,T)]( 4-3 )
onde C é a mobilidade do contorno. E interessante notar a semelhanga dessa equacgdo
com as que discutimos no item 1.3,

Apesar do método descrito ser aparentemente bastante coerente com o fenémeno
fisico, alguns autores perceberam que alguns problemas ocorriam: a nucleagdo
aleatéria de um grdo no interior de outro e valores de n abaixo de 0,5. Como dois
fendmenos sugeriam distorgdes no modelo computacional, Radhakrishnan e Zacharia
[RADHA] propuseram um novo algoritmo que, além de eliminar tais distorgbes, acelera
a execugdo computacional.

Neste novo algoritmo, a nova orientagdo a ser "testada" em cada posicdo da matriz ndo
sera mais escolhida entre todas as possiveis (Q-1), mas somente entre aquelas que
estdo ao redor do elemento. Dessa forma, se um elemento da matriz tem ao seu redor
grdos com orientagdo 3, 6, 13 e 25, a sua nova orientacdo hipotética sera escolhida
entre esses quatro valores. Radhakrishnan realizou um interessante estudo analitico do
problema. Definindo a constante de mobilidade

M
Q=144

onde N_ € o nimero de orientagdes diferentes daquela do elemento considerado e Qo
numero total de orientagdes. Numa matriz quadrada bidimensional N, varia de 1 a 8. No
inicio da simulag&o ele oscila entre 7 e 8, j& que cada elemento da matriz esta cercado
de elementos diferentes. Com o avango da simulagdo, esse valor cai para 1 ou 2,
dependendo se o elemento estd no contorno de grdo ou em um ponto triplo. O nimero
de pontos triplos tende a cair mais ainda, e o valor de N, tende a 1.

No caso de uma simulagdo com Q = 128, teriamos no inicio da simulagao:

C= —8— = 0,063

128 -1 (4-5)
e, no final,
C= L =0,0079

128 -1 (4-6)

No novo algoritmo proposto o valor local de Q é 8. Os valores de C ficariam,
respectivamente 1,14 e 0,14, o que expressa uma mobilidade maior e com menor
variagdo ao longo da simulacdo.

Mehnert [TSCAL] também discutiu a questdo da escala de tempo, chegando a um
equacionamento semelhante.



Além disso, eles propuseram um novo critério para se definir o nimero maximo de
orientagdes cristalograficas na simulagdo. Normalmente, valores de Q entre 30 e 64
eram utilizados. O coalescimento artificial dos grdos, segundo os mesmo autores,
poderia ser outra razdo para a distidncia entre os resultados das simulagbes e a
descrigdo tedrica do fendmeno. A proposta foi de adotar um valor maximo de Q igual ao
ndmero de sitios da matriz, o que minimizaria o problema. Assim, numa matriz de 200
x 200 (40.000 sitios) se utilizaria o valor maximo de Q=40.000.

A inclusdo da influéncia da textura, no modelamento de Monte Carlo, segue 0 mesmo
principio j& exposto no presente trabalho: trabalhar com o modelo fisico antes de
considerar o equacionamento e as simplificacdes matemaéticas.

A existéncia de textura faz com que nem todas as caracteristicas dos contornos sejam
idénticas, assim como sua mobilidade.

O modelo proposto por Mehnert, e ja utilizado por outros autores, é o da construcdo de
uma matriz simétrica de energia dos contornos. Supondo uma liga com somente duas
componentes de textura:

A B
A 0,2 1,0
B 1,0 0,2

No caso de trés componentes de textura:

A B o
A 0,2 1,0 0,6
B 1,0 0,2 03
C 0,6 0,3 0,2

A interpretagdo das tabelas é simples: o contorno A/A tem mobilidade cinco vezes
menor do que o contorno A/B, por exemplo. Da mesma forma, o contorno A/C tem
mobilidade duas vezes maior do que o B/C.

Dada a natureza da simulagéo, essas diferentes mobilidades devem ser interpretadas
como probabilidades de migragédo dos contornos. Assim, o sucesso de uma reorientacdo
(ou o sucesso de um micromovimento de migragdo) serd determinado pela
probabilidade genérica (do método convencional) multiplicada pela "mobilidade" de
cada tipo de contorno.

Considerando o caso em que ha somente duas componentes de textura, quando as
tentativas de reorientagdo envolverem os contornos A/A E B/B, a probabilidade de
confirmagdo sera cinco vezes menor se comparadas as situagdes envolvendo o tipo A/B
e B/A. Isso equivale dizer que é muito menos provavel um grio de A crescer sobre
outro do mesmo componente do que um grdo de B crescer as custas de um de A (e
vice-versa). Esse conceito reproduz a idéia de que contornos com grandes diferengas
entre as orientagdes cristalograficas tém mobilidade maior.

A matriz de mobilidade deve ser fornecida ao programa, seja através de dados
empiricos ou estimativas tedricas. A realizagdo computacional desse conceito é



detalhada a seguir.

Sdo definidas "classes" de valores de Q que correspondem aos componentes de textura.
Assim, numa simulacdo com Q=100, o componente A ocuparé a faixa 0-50 e o B, 51-
100. A fragdo volumétrica dos dois, nesse caso, é idéntica.

O valor do Hamiltoniano continua sendo
H=-J>18s -1
= (4-7)

A transigdo de probabilidade W, que valia
W = {exp(-AG!k,T) =AG>0

1= AG <0 (4-8)

passa a valer
{Paq exp(~AG k,T)=> NF >0

) <
Py = AG <0 (49)

onde Pcc; sdo os elementos da matriz de mobilidade.

Utilizando esse algoritmo, Mehnert simulou estruturas de dois e trés componentes
numa matriz 500x500, com Q=100. Os valores do expoente n encontrados foram
bastante préximos de 0,50 (0,47), e verificou-se que a fragdo de area ocupada pelos
diferentes componentes tende a se inverter ao longo da simulacdo. Verificou-se
também que, quanto maior a diferenca de mobilidade, mais acentuada é a diferenca
final entre as fragdes dos dois componentes. Ambas as conclusdes se encontram de
acordo com as observagGes experimentais de Abbruzzese apud Mehnert, utilizando
dados do Al-1%Mn (laminado a frio 95% e recozido a 6200C).



Matrizes

Software e Hardware

O hardware usado para as simulagdes foi um Pentium II 233 Mhz com 64 MB de meméria
RAM.

O software de simulagdo sofreu varias implementages ao longo do trabalho. A primeira
versdo foi feita em Turbo Pascal 7.0, sendo depois convertida para ANSI C++. Elaboramos
também o projeto de uma interface grafica para o programa em Windows.

O software gera dois tipos de arquivo: o primeiro contém o tempo de simulagd@o e o
tamanho de gréo, e o segundo contém "fotografias" das matrizes em intervalos regulares
de tempo, escolhidos pelo usuario.

Para a visualizagdo das matrizes, foi desenvolvido um sistema usando como plataforma o
AVS, um pacote para visualizagdo avangada. O sistema, desenvolvido por Sérgio Sami
Saad no Laboratério de Sistemas Integraveis da Escola Politécnica da USP, sob a
orientagdo do Prof. Dr. Marcelo Knorich Zuffo, possibilita o uso de matrizes 2D e 3D. No
caso do primeiro tipo, podemos animar as diversas matrizes produzidas pelo programa em
C++ e reconstruir graficamente a evolugdo do tamanho de grdo.

No caso de matrizes tridimensionais, o software permite rotagdo e translagao em todos os
eixos, cortes em qualquer coordenada e visualizagio por isosuperficies.
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Figura 2 - O ambiente de desenvolvimento do AVS



Figura 3 — Matriz 100 x 100 x 100, visualizada no AVS, com trés
cortes ortogonais.

Figura 4 — A mesma matriz, agora visualizada por isosuperficies. Apenas os graos
"azuis" aparecem.

Aprimoramento do modelo
Geradores de nimeros aleatarios

A primeira preocupagdo quando se utiliza o Método de Monte Carlo é a confiabilidade do
gerador de numeros aleatdrios. Realizamos um extensivo estudo comparativo entre o
Borland C++, MS-Excel 8.0 e Visual Basic 6.0 para averiguar a homogeneidade dos
valores aleatérios gerados.
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Gréfico 1 - Histograma de geragdo de nameros aleatérios no Visual Basic 6.0,
comparavel ao Visual C++ e ao MS-Excel 97 (8.0).

Os testes feitos com 10 milhdes de nimeros aleatérios no C++ e no Excel foram
semelhantes ao do Visual Basic 6.0, com nGmero aleatorios de 1 a 128. Os resultados
mostraram que a média foi a mesma, a menos de variages na segunda casa decimal.

Tamanho da matriz e estabilizacan
No inicio das pesquisas com o algoritmo, nos preocupados de oito conjuntos de

amos em definir qual seria o tamanho da matriz necessario para um resultado confiavel e
reprodutivel. Normalmente valores como 2002 foram utilizados para simulagdes 2D e 503
ou 1003 para simulagbes 3D (Error! Reference source not found., [MEHNERT3],
[MEHNERTZ2], Error! Reference source not found., [BAUDIN]). O tamanho evidentemente
tem um forte impacto no tempo de computagédo necessario, ja que um aumento de 1002
para 2002 multiplica por 4 o numero de elementos da matriz.

Para realizar a analise, projetamos um experimento com tamanhos crescentes de
matrizes, onde analisamos o tempo de simulagéo necessario para que cada uma atingisse
a estabilidade. Esse estado ocorre quando a matriz toda é um monocristal ou quando
temos dois ou trés gréos com interfaces praticamente retas.

Dessa forma foi possivel estabelecer uma lei temporal empirica de estabilizacio da matriz.
Essa equagdo € especialmente interessante para o projeto de experimentos: se em uma
determinada simulagdo precisaremos de apenas 10.000 MCS para estudar um fenémeno
qualquer, podemos calcular o tamanho minimo da matriz que fornecerd resultados
aceitaveis. O grafico abaixo contém os d

simulagdes, para tamanhos de 10, 25, 50, 75, 100, 125, 150, 175 elementos de lado.
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Figura 5 - Tamanhos de matrizes e tempo de estabilizagio, em Monte Carlo



Steps. Notamos que o tempo para estabilizagdo da matriz é proporcional a area
da mesma (que, na realidade, corresponde a atingir o estado monocristalino ou
com muitos poucos griaos de contornos retos).

Um resultado interessante € a proporcionalidade do tempo para estabilizacdo e a area da
matriz. Isso corresponde, na verdade, & quantidade de material de uma amostra real. E de
se esperar que numa simulagdo tridimensional o tempo de estabilizagdo fosse proporcional
ao volume da matriz.

A importancia desse resultado é que, de posse desse dado, podemos projetar um
experimento de modo a otimizar o tempo de processamento. De posse dos parametros do
material e do tamanho de gréo final do experimento, podemos utilizar o0 menor tamanho
de matriz necessario.

Estudo dos algoritmos

A primeira implementagdo do software foi realizada em Turbo Pascal 7.0, da Borland
Corporation. Essa plataforma de desenvolvimento, entretanto, apresentava varias
limitagbes principalmente no gerenciamento de memdria. Como as matrizes do algoritmo
sdo bastante grandes, esse é um ponto critico.

Quando precisamos construir matrizes maiores, a necessidade de migracao para o C++ foi
premente. Como as duas linguagens sdo estruturadas e apresentam vérias caracteristicas
conceituais comuns, a migragao foi suave. Para assegurar que ambos os programas
apresentavam resultados equivalentes, realizamos uma comparacio entre os dois.
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Figura 6 - Comparacao dos programas executados em Pascal e em C++. Verifica-
se que os resultados foram praticamente idénticos, com baixo e estavel erro
relativo.

Pelo grafico verificamos que as duas curvas praticamente se superpoe. Esse resultado
garante a validade do algoritmo e a confiabilidade do gerador de nimeros aleatérios de
ambos.

Estudo dos valores de Q

Diversos autores tém se preocupado em estudar o valor ideal de Q. As duas preocupacoes
principais sdo evitar a coalescéncia artificial de gréos e conseguir um coeficiente de
crescimento de grdo compativel com o valor teérico. O nimero maximo de orientages Q é
importante ja que a probabilidade de acerto num sorteio, pelo algoritmo tradicional, é
proporcional a Q-1 [MEHNERT3]. A cinética do processo pode ser alterar ja que, para um
numero muito pequeno de orientacdes possiveis, a coalescéncia artificial de graos acelera
0 crescimento aparente. Isso ocorre porque dois gréos de tamanho D repentinamente se
unem (ja que o valor da orientagdo de cada um deles, coincidentemente, é o mesmo) e
formam um novo grao de tamanho 2D.

O valor de Q, portanto, deveria ser t&o alto quando possivel, como propuseram Zacharia



et al. [RADHA]. Entretanto, um valor elevado de Q pode prejudicar a velocidade do
programa de simulagdo, jd que precisaremos usar tipos de varidveis compativeis. Quanto
menor o nimero de orientagdo, menos bytes cada elemento ocupara. A conseqléncia é
que a matriz ocuparad menos espaco e os calculos se aceleram.

Para investigar essa questdo projetamos um experimento com varios valores de Q: 8, 16,
32, 64, 128, 256, 512, 1024 e 30.000.

Valores ciasosntas e 0

Figura 7 — Grafico com valores crescente de Q (o nimero maximo de orientagoes
dos elementos da matriz), mostrando a alteracdo na cinética do crescimento de
grao.

Para Q=8 observamos o efeito discutido anteriormente, da aceleragdo do processo: a
curva é a que apresenta um valor de n mais elevado. Ja em Q=16 esse efeito € menos
notdvel e, ja em Q=64, o grafico mostra claramente que as curvas se superpde. Por
seguranca, escolhemos para as simulagdes o valor de Q=128 como padrio (valor esse que
se encontra dentro da faixa das varidveis do tipo byte, no C++ e no Turbo Pascal).

O Efeito da "Temperatura”

Outra variavel importante do algoritmo de Srolovitz é a “temperatura”. Antes de qualquer
matl-entendido, € bom dizer que colocamos "temperatura” entre aspas porque esse valor
ndo corresponde a temperatura fisica. Trata-se, na verdade, de um fator de ajuste do
algoritmo [MARK]. Como discutido na interessante reunido com os pesquisadores do
Sandia National Laboratories Mark Miamodo, E. Fan e Richard Fye, a temperatura fisica é
tratada de outra forma, introduzida no algoritmo como modificador da mobilidade das
interfaces e ndo no termo exponencial da transigdo de probabilidade. Esse termo regula as
mudanga de orientagdo quando a configuracdo proposta ndo é energeticamente favoravel,
No material real o movimento browniano dos atomos faz com que transigdes com D G
positivo também possam ocorrer, embora tenham pouca probabilidade de se manter. No
algoritmo, esse mesmo conceito é reproduzido. Mesmo se a mudanca aleatéria de
orientagdo aumentar a quantidade de interface do elemento considerado, ela podera ser
aceita com uma determinada probabilidade, ja que

expCAG K, T) = AG > 0

1= AG <0 (4-1)

onde AG¢ 3 alteragdo de energia ocasionada pela mudanca de orientagdo, kb é a
constante de Boltzman e T a temperatura.

Normalmente esse fator é eliminado pela maioria dos autores (que simplesmente adotam
T=0, [MEHNERT3], Error! Reference source not found.) no caso de matrizes triangulares.
No caso de matrizes quadradas, Srolovitz afirma que ele é necessario para corrigir o tipo
de discretizagdo Error! Reference source not found. da matriz quadrada. Para investigar

esse fato, projetamos um experimento com quatro situagdes. Na primeira, uma mudanca



ndo-favoravel energeticamente nunca serd mantida. Nas trés outras, hd uma
probabilidade fixa de 0,1%, 1% e 10 % da mudanca ser aceita pelo algoritmo.
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Grafico 2 - Tamanho de grdo x Tempo com valores crescentes de "T". Como
exposto anteriormente, T ndo representa a temperatura fisica, e sim um
coeficiente adicional que permite que situacdes de maior energia livre sejam
mantidas.

Os resultados do grafico indicaram que esse fator, mesmo na matriz quadrada, pode ser
negligenciado. Até aproximadamente 10.000 MCS, as quatro simulagtes apresentaram o
mesmo coeficiente angular. A simulagdo com 10% (curva azul clara), depois de
aproximadamente 12.000 MCS, apresentou um crescimento momentineo e depois
retomou o mesmo coeficiente angular, mas com oscilagdo periddica em torno da reta
média. Entretanto, nenhuma melhora no coeficiente angular da curvas foi conseguido.

Algoritmo convencional x novo

Uma mudanga importante ocorrida na simulagdo de crescimento de grdo pelo método de
Monte Carlo foi o novo algoritmo proposto por Zacharia [RADHA]. Nesse algoritmo, a
"nova" orientagdo € escolhida apenas dentre aquelas dos vizinhos mais proximos, e ndo
dentre todas as possiveis (Q-1) como no algoritmo convencional de Srolovitz. Realizamos
entdo uma série de experimentos para comparar os dois algoritmos.
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Figura 8 — Comparacéao entre o algoritmo convencional e 0 novo, numa matriz
200 x 200, com Q=128.



Figura 9 - Comparagédo das microestruturas obtidas pelo algoritmo classico

(esq.) e pelo algoritmo modificado de Zacharia (dir.), no mesmo instante de

tempo. E clara a diferenca do estagio de evolugio da microestrutura, o que
reflete-se no coeficiente angular da curva Log x Log.

Simulagao final

Passamos ent3o a realizar experimentos para determinar o expoente de crescimento de

gréos propriamente dito, dentro das condicBes otimizadas anteriormente definidas. Vale

lembrar que os estudos expostos nos itens anteriores foram de extrema utilidade para a
calibragdo do modelo, o que se refletiu na qualidade dos resultados finais, que vemos no
grafico seguinte.
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Grafico 3 ~ Tamanho de grio em funcdo do tempo de simulagio, em MCS. A
concordancia com o valor teédrico de n = 0,50 é expressiva.

Observamos que o expoente de crescimento obtido, n=0,509, estd muitissimo préximo do
valor tedrico de 0,50.

Uma analise mais detalhada desse resultado é feita a partir do proximo grafico.
Realizamos uma analise do expoente de crescimento de grao depois de cada passo da
simulagao.



Histograma dos coeficientes angulares focais
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Grafico 4 - Histograma dos coeficientes angulares locais da curva de
crescimento, plotada em um grifico log x log, a cada 10 MCS. O valor da mediana
é de 0,48 e a média 0,52.

O resultado foi que, como observamos no histograma, a maior parte dos valores se
concentra no intervalo de 0,38 a 0,59, com média 0,52. Isso mostra que, mesmo
analisado passo a passo, o algoritmo apresenta um coeficiente de crescimento compativel
com o valor global.

Comparagdo com resultados experimentais

0 experimento "real”
O tratamento de crescimento de grédo foi realizado em forno do tipo retorta. Foram feitos
ensaios de 2, 4 e 16 horas sob uma temperatura de 8500C.

O material em questdo, Fe-2,5%Si, com baixissimo carbono (< 0,005), é bastante
vulneravel a oxidag&o, principalmente em alta temperatura. Portanto, adotou-se conduzir
0 experimento no vacuo para assegurar que ndo ocorresse oxidagdo da amostra.

Além disso, houve precaug¢des no momento de abertura do forno para que nao ocorresse
oxidagdo da chapa anterior ao seu resfriamento.

Preparo de amostras para microscopia

Primeiramente, as amostras foram preparadas em lixadeira circular com agua com as
seguintes lixas: 180, 220, 320, 400, 600, 1000. Em seguida foram polidas nas politrizes
ém,3m,1m.

Depois as amostras foram atacadas com reagente Nital (5%). No entanto, a observagao
das amostras revelou a presenga de pites de corrosdo ao longo de todas as amostras.

Assim, as amostras foram novamente lixadas e polidas, sendo adotado o procedimento de
lixamento a seco e nas politrizes teve-se a precaucdo de exposicdo minima das amostras
para evitar qualquer tipo de oxidag3o.

O ataque quimico ndo se revelou homogéneo ao longo da amostra. Alguns graos se
encontravam bastante revelados e outros tinham um ataque pouco pronunciado. Assim,
para a estimativa de controle de grdo exagerou-se no tempo de ataque a fim de assegurar
a0 maximo que nenhum contorno de gréo ficasse oculto a observacdo durante a
estimativa.

Num segundo momento, as amostras que foram utilizadas para a estimativa foram
novamente polidas e atacadas, mas com cautela para ndo atacar excessivamente
nenhuma regido.

Metalografia Quantitativa



A caracterizagao e a compreensdo das propriedades de um material denotam uma estreita
correlagdo com a microestrutura do material. Sendo assim, é fundamental uma medida
mais precisa possivel do tamanho de gr3o.

As medidas de tamanho de grdo podem ser determinadas através de diversas técnicas.
Devido a irregularidade de formatos dos grdos, o conceito de didmetro de grdo é muito
arbitrario. Um dos métodos constitui a medida por interceptos [UNDERWOOD].

Segundo Hilliard [HILLIARD], a estimativa de tamanho de grdo pelo método do intercepto
é feita com o auxilio de uma linha de comprimento padrdo sobreposta & microestrutura.
Assim, deve-se fazer uma contagem do nimero de contornos de grao que interceptam a
linha.

A relagdo entre o nimero de interseccdes por unidade de comprimento esta diretamente
relacionado com a area de contorno de grdo por unidade de volume.

NL=SV/2(-2)

Onde NL € o nimero de interceptos por unidade de comprimento e SV a drea de contorno
de grdo por unidade de volume.

Através da relagdo matematica acima é possivel obter o tamanho de grao através da
medida média do comprimento do intercepto:

L=LT/N.M(-3)

onde L é a média do comprimento do intercepto, LT o comprimento da linha teste, N o
nimero de interseccdes sobre a linha teste e M a magnitude do aumento

A figura teste ideal proposta por Hilliard é um circulo, no caso do experimento foi utilizada
uma linha teste do microscépico Neophot ja calibrada.

Os campos escolhidos para as medidas devem ser feitos de modo aleatério. Como a
amostragem de contagem é feita de modo probabilistico, deve-se fazer um tratamento
estatistico dos dados (média, desvio padrdo, erro). Ndo obstante, deve-se estabelecer
nivel de confianga de aproximadamente 95% para que o resultado tenha significado.
[ABRAMS]

Resumidamente, o método consiste em fazer tantas medidas quantas forem necessarias
até que o desvio padrdo se torne constante, ou seja, que o desvio padrdo calculado seja
correspondente a heterogeneidade da prépria microestrutura.

Determinacao do tamanho de grao nas amastras

Para as amostras ensaiadas, a metodologia para determinagdo do contorno de grio foi
feita de acordo com a norma ASTM E-112.

No que concerne o significado estatistico das medidas, a norma estabelece que devem ser
feitas no minimo um total de 500 contagens de interceptos numa amostra para que o seu
desvio padrao seja minimo.

Foi utilizada como linha teste, uma linha graduada de 0,8mm do microscépio Neophot.
Estabeleceu-se a contagem de 20 campos escolhidos aleatoriamente. Para tanto, a escolha
do aumento teve como critério o niimero minimo 25 pontos dos contornos interceptando a
linha teste.

Como ja foi citado, o ataque quimico da amostra foi feito de modo mais pronunciado para
que n3o fosse ignorado nenhum contorno de gréo e para garantir uma contagem confidvel.

A tabela abaixo mostra a contagem, a média, o desvio padrdo e o erro na determinacio
dos tamanhos de gréos das amostras. Notamos que o desvio padrdo e o erro aumentam
para tempos maiores, ja que como observamos nas fotografias, ndo ha uma distribuicdo



homogénea do tamanho de grao.

Tempo (h) Média Desvio Erro
padrao

0 53,0 11,0 4,9

2 112,7 14,7 6,6

4 127,5 20,1 9,0

16 141,6 26,0 11,6

Os quatro tratamentos térmicos realizados, nos apresentaram resultados interessantes.

Figura 11 - Aumento 50x, tratamento de 2h



Figura 14 - Aumento de 100x, 16h de tratamento, notamos que a distribuicdo de
tamanhos de grdo é provavelmente bimodal



Figura 15 - Aumento de 100x, 2h de tratamento, notamos que a distribuicdo de
tamanhos de grao é mais uniforme do que no exemplo anterior.
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Grafico 5 - Grafico em escala logaritmica do tamanho de grao versus tempo,
revelando um coeficiente de 0 a 4h de 0,56 e de 4 a 16h de 0,09.

Em primeiro lugar, o coeficiente de crescimento de grdo, obtido linearmente a partir do
grafico log x log, esta dentro do esperado: de 0 a 4h, o valor é bastante proximo do
fornecido pelo modelo e pela teoria. A medida que os grdos alcangam a ordem de
grandeza da espessura da chapa (em torno de 100 m m), seu crescimento € inibido
fortemente, e o coeficiente cai para 0,09.

A simulagdo de crescimento de grdo pelo método de Monte Carlo é assunto relativamente
novo. Dados fundamentais, tais como a mobilidade de interfaces, sdo ainda escassos. Num
futuro préximo, quando dados detalhados acerca das propriedades dos contornos
atingirem "massa critica”, a simulagdo por computador podera ocupar um lugar ainda mais
importante no cenario da analise microestrutural.



Conclusdo

O modelo utilizado, pelos resultados das simulagdes, apresenta uma concordancia
expressiva com a descrigdo e o equacionamento tedrico do crescimento de grao.

A investigagdo dos valores de Q, da "temperatura" e do tamanho da matriz nos
permitiu construir uma "base" tedrica para utilizar o método de Monte Carlo de forma
consistente.

A correlagdo com a experiéncia realizada na liga Fe-Si demonstrou a corregao e a boa
calibragdo do modelo.

E possivel utilizar a simulagdo como ferramenta auxiliar na pesquisa de crescimento de
grao.

Au voir (reflexdo final)

Uma tentag&o freqliente nas ciéncias humanas é a "importagio" de modelos de outras areas
para resolver problemas cuja solugdo se mostra dificil com as ferramentas habituais. A
importancia cientifica das ferramentas de modelamento computacional aplicada ao
comportamento humano e social € enorme: elas poderiam nos ajudar a equacionar e
entender melhor diversos fendémenos sociais. Seu uso poderia aliviar problemas que
perseguem a humanidade ha séculos: superpopulagdo, salde publica, disseminagdo de
epidemias etc.

Entretanto, dai a propagandear que é possivel "modelar" o cérebro humano ha uma grande
distancia. Esse modelamento podera até ser possivel no futuro, mas apenas dentro de
situagdes bastante especificas e limitadas.

Mesmo se conseguissemos representar cada um dos bilhdes de neurdnios do cérebro
humano num supercomputador, e que alimentdssemos o sistema com as regras quimicas e



fisicas através das quais eles se relacionam, ndo sabemos se o resultado seria uma réplica
do cérebro humano. Nas palavras de David Fogel [FOGEL]:

"Um modelo é uma mentira. Eles sempre deixam algo de lado, sendo seriam t&o
complicados como a realidade que queremos modelar."

Mas... ndo seria possivel sofisticar tanto o modelo que ele se transformasse em... realidade?
Como engenheiros, ndo temos sempre a tentacdo de aprimorar nossos resultados, diminuir
sua imprecisdo, melhorar sua confiabilidade? E esse processo nio seria, a principio, infinito,
dependendo apenas da qualidade de nossos equipamentos de simulagdo e medigdo?

Ora, o Principio da Incerteza de Heisenberg provou que a observacao de um fenémeno
qualquer interfere no mesmo. Havera sempre uma incerteza minima na determinacdo da
localizagdo e da velocidade de um elétron, dada a interacdo gue inevitaveimente existe
entre o foton emitido e a prépria particula.

Uma das conclusdes mais caras as ciéncias humanas é, de certa forma, andloga ao Principio
da Incerteza de Heisenberg. Max Weber, um dos fundadores da Sociologia Moderna,
destruiu o mito da imparcialidade cientifica: um socidlogo nio podera descrever uma
sociedade de forma completa e imparcial porque ele jamais podera enxerga-la sem os
"filtros™ criados durante a sua prépria histéria de vida. O observador ndo sé estara sempre
interagindo com o seu objeto de estudo como também percebera a "realidade” sempre de
forma subjetiva. Segundo Izidoro Blikstein, em "Kaspar Hauser ou a Fabricacao da
Realidade" [HAUSER], os "Oculos sociais" determinam a visdo de mundo de cada um, ea
"realidade” como entidade Unica e incontestavel simplesmente n3o existe.

Mas sera que os engenheiros, fisicos e quimicos estariam também sujeitos a subjetividade?
Nossa observagdo também estaria condicionada pelo nosso repertério? 14 que um modelo,
por mais "cientifico" que seja considerado, sera sempre incompleto, ele sempre envolvera
escolha, selecdo. Ora, ndo ha escolha que ndo seja em alguma medida mediada pelo
repertorio. Dirdo os exatos que o engenheiro faz escolhas com base em dados objetivos e
que, portanto, seriam decisdes "absolutas". Entretanto, sabemos que uma experiéncia
fornece uma quantidade infinita de dados. Quais sdo selecionados? Quais sao desprezados?
O que nos garante que estamos vendo o que efetivamente corresponde a "verdade"? Antes
de Einstein, Bohr e Planck, quantos experimentos que hoje estdo no campo da mecénica
quantica e da relatividade ndo foram explicados com razoavel aceitagdo pela Fisica cldssica?
Ora, como podemos explicar um fenémeno com as ferramentas teéricas erradas?

A resposta € que a denominagdo de "ciéncias exatas” se deve ao ferramental matematica,
mas ndo € uma qualificagdo das respostas que podemos oferecer. Muitas vezes, Nossas
solugGes ndo sdo tdo "exatas" assim, apesar que quase sempre funcionarem.

Nosso modelo de crescimento de grdo de fato se aproxima bastante do que as equagdes
indicam. Mas ndo temos a pretens3o que ele seja, afinal, realidade.

Os recentes avangos da Ciéncia, tais como a clonagem, a engenharia genética ou mesmo a
inteligéncia artificial parecem estar sempre ameagando os "segredos fundamentais" da
natureza, que sempre acreditamos complexos demais para a nossa compreens3o. Se eles
serdo desvendados, ndo sabemos ainda. Mas podemos torcer para que, por mais que a
Ciéncia avance e que os computadores insistam em imitar cada vez melhor seus criadores,
continuemos inexplicavelmente encantados ao olhar um amanhecer, imodelaveis diante da
mulher que amamos, incontroldveis frente do desafio de viver, incorrigiveis, improvaveis,
inalcansaveis; assim humanos, terrivelmente humanos.
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